

The Hydrogen Ecosystem in France

Overview of France's hydrogen initiatives, discoveries, and future plans Presentation for Louisiana State Congress Clean Hydrogen Task Force April 8th 2025

emmanuel.henriet@expertisefrance.fr

France's Commitment to Hydrogen

National strategy to achieve carbon neutrality by 2050. Establishment of giga factories for electrolyzers. Goals and initiatives under France 2030 Plan.

HYDROGEN (capacity electrolysis installed) Data extracted from France last MultiYear Energy Planning Proposition (PPE 3)	How many?	0 GW (as of 2022)	Up to 4.5 GW (9-19 TWhpci) Planned for 2030	Up to 8 GW (16- 40TWhpci) Planned for 2035	
	How?	Investments in equipment in the sector, a support mechanism for the production of renewable and low-carbon hydrogen for industry and incentives for consumption in transport through the reduction of the carbon intensity of fuels			

Background and context on energy in France

En TWh (données corrigées des variations climatiques)

* EnR = énergies renouvelables.

Champ : jusqu'à l'année 2010 incluse, le périmètre géographique est la France métropolitaine. À partir de 2011, il inclut en outre les cinq DROM. **Source :** SDES, Bilan énergétique de la France

Source : France Primary Energy Production (SDES) 2024 report, Bilan Énergétique de la France

Dependancy to Fossil Fuels in France

Source : France Primary Energy Production (SDES) 2024 report, Bilan Énergétique de la France

France current nuclear production sites : the backbone of our energy production

The Promise of White Hydrogen

White hydrogen: Naturally occurring and carbon-free. Advantages over traditional hydrogen production methods. Role in reducing carbon emissions and promoting sustainability.

E World's Largest Hydrogen Reserve

150

Liberté Égalité Fraternité

RÉPUBLIQUE

FRANÇAIŠE

Discovery of 46 million tons of natural hydrogen in Folschviller, Moselle region.

EXPERTISE

FRANCE

GROUPE AFD

Potential to revolutionize clean energy production. Highlighting the significance of this find for France's energy future.

Economic Boost and Environmental Benefits

Economic value currently estimated at \$92 billion.

Potential for job creation and local economic stimulation.

Environmental benefits of transitioning to white hydrogen.

Overcoming Challenges

Challenges in extracting and utilizing white hydrogen.

Need for technological advancements and infrastructure development.

Future prospects and ongoing research efforts.

Production	 Electrolyse A partir de biomasse Reformage du méthane 	 Pyrolyse du Méthane Hydrogène géologique Autres 	L'écosyst hydrogèn en 2035	È me bene le te te te te te te te te te te te te te	tòme hydrogène en France nter 66 600 emplois* dans maines d'activités et générer os de PIB. "Ilhère aura contribué à hauteur pomptes publics en impôts, taxes clales. Soit un retour de 4 euros ti par l'État**.
Stockage	 Forme gazeuse Forme liquide 	Forme solideGéologique	(Sans détail des activités transverses)	La filière hydrogà de réduire de 8 % commerciale en l	one permettra également Je déficit de la balance blens.
Transport	Voie routièreHydrogénoducs	• Voie maritime	14.	H. O	HI LAND
Molécules de synthèse	 Méthane 	○ L(O)HC	Production 7,5 Md€ CA 2,9 Md€ PIB	Transport/Stockage 1,9 Md€ CA 1,1 Md€ PIB 7100 ETP	Usages 22,1 Md€ CA 8,5 Md€ PIB 38900 FTP
istribution	• Stations de recharge				
Jsages	 Piles à combustible Mobilité VL & PL Applications portuaires Aéronautique Ferroviaire 	 Engins spéciaux Usages stationnaires 	1,2 Md€ CA 660 M€ PIB 3 540 ETP Part due au	60 ME CA 25 ME PIB 280 ETP ux équipementiers de chaque se	11,8 Md€ CA 4,9 Md€ PIB 17700 ETP egment
Composants transverses	Instrumentation Alimentation électrique Automation (à venir)	des électrolyseurs			

Highlight on hydrogen ecosystem and solutions in France

SMR and CCS

Electrolysers manufacturing

Global Hydrogen Innovation

Importance of international cooperation. France's potential to lead global energy innovation. Collaboration in advancing hydrogen technology.

Data source : Adapted from Evolen Study on H2 – 2024 (French Energy Supply Chain Association)

Global Hydrogen Innovation

			_	-		
Technology	Energy Source and input	Carbon Footprint (LCA)	Maturity	Advantage	Challenges	Related color
Water Electrolysis	Renewable Electricity and Water	Between 0.4 – 3.0 kg CO2 / kg H2 (Next LCA ENR)	TRL 9	*Attractive price of electrical energy *Attractive price for production by regions with good renewable energy potential	*Intermittent production and impact on CAPEX utilization. *Need for abundant electrical renewable energy source *Hydrogen price depending on the price of electricity	GREEN
Water Electrolysis	Nuclear Electricity and Water	Between 0.4 and 0.8 kg CO2 / kg H2	TRL 9	*High load factor possible due to continuous power supply to electrolysers	*Arbitrage of nuclear power plant production: requires excess capacity	PINK
Water Electrolysis	Electricity from Network and water	Less than 3 kg CO2/kg H2 if mains < 60 g CO2/kWhe (France between 2.4-2.8 kg CO2/kg H2)	TRL 9	*High load factor possible due to continuous power supply to electrolysers	*Hydrogen price directly dependent on the price of electrical energy *carbon footprint dependent on the energy mix	YELLOW
Thermal process: Natural gas steam reforming (SMR/ATR) with CCS unit	Natural Gas	Between 1 and 3 kg CO2 / kg H2 according to LCA analysis (including natural gas origin)	TRL 8-9	*Operators (industrial gases) in place. *Mass production capacity *low LCOE (< 3.5 €/kg)	*Origin and cost of natural gas *requires CO2 saving: capture + transport + storage	BLUE
Thermal process: Steam reforming of gas (SMR/ATR)	Biomethane	Approx. 2.1 kg CO2	TRL 8-9/ TRL 5-6	*low carbon footprint *production of biogenic CO2	*production limited by volumes of biomass inputs to produce biomethane *Input collection radius *recovery of co-products (biogenic CO2)	GREEN
Thermal Process: High Temperature Pyrolysis	Natural Gas / Biomethane	Between 1 and 3 kg CO2 / kg H2 according to LCA analysis and Source of electrical energy	TRL 7-8	*No direct CO2 emissions per unit *Co-production of black carbon which is a carbon sink	*origin, cost of electricity and methane *Need to find new outlets for carbon black	TURQUOISE / GREEN
Thermal Process: Thermolysis, Pyrogasification, Others	Biomass	Approx. 2 kg CO2 / kg H2 and 10-12 kg biogenic CO2 / kg H2 CO2 partly neutralized by the production of co-products	TRL 9	*co-production of biogenic CO2 and biochar *low carbon footprint	*production limited by the available volumes of inputs *Input collection radius *Valorisation of co-products	GREEN
Geological process: Drilling boreholes for extraction	No inputs	Not available (low because of low energy consumption)	TRL 5	*Low energy consumption *can be coupled with the valuation of Geothermal and Helium	*Site exploration in progress *Remains to be developed and commercialized at industrial scale	WHITE
Geological process: Injection and recovery wells	Water	Not available (negative impact with sequestration of CO2)	TRL2	*Low energy consumption *Allows CO2 sequestration in parallel with H2 production	Need to move to pilot and then industrial scale to Test the model	ORANGE

The Future of Hydrogen in France

Summary of key points.

France's potential as a leader in hydrogen energy.

Ongoing research and development efforts.

